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Abstract: Boundary layer flow has great importance in engineering applications such as oil bed recovery, filtration, thermal 

insulations, heat exchangers, geothermal analysis and so on. This paper investigated the effects of heat radiation, soret and 

dufour in the presence of suction or injection on a boundary layer flow over a porous wedge. The governing equations with the 

boundary conditions are non-dimensionalized by introducing some non-dimensional variables. The flow model is described in 

terms of a highly coupled and nonlinear system of partial differential equations as the method of solution seeks to decouple the 

original system to form a sequence of equations corresponding to the momentum, energy and concentration equations that is 

solved in a computationally efficient manner. The resulting equations are solved using a numerical technique called Bivariate 

Spectral Relaxation Method (BSRM). Numerical calculations are carried out for different values of dimensionless parameters 

and the analysis of the physical parameters of engineering applications are investigated. Effects of these major parameters on 

transport behaviors are investigated and typical results are illustrated to reveal the effect of pertinent parameter on the velocity, 

temperature, concentration profiles of the flow. The effects on the local skin friction, local nusselt and Sherwood number are 

also presented in the tables. 

Keywords: Chemical Reaction, Heat Radiation, Porous Wedge, Soret and Dufour,  

Bivariate Spectral Relaxation Method (BSRM) 

 

1. Introduction 

Thermal radiations on flow and heat processes are of 

major importance in the design of many advanced energy 

conversion systems operating at high temperature. Thermal 

radiation within these systems is usually the result of 

emission by hot walls and the working fluid. The present 

trend in the field of chemical reaction analysis is to give a 

mathematical model for a system to predict the reactor 

performance. A large amount of research work has been 

reported in this field. In particular, the study of heat and mass 

transfer with chemical reaction is of considerable importance 

in chemical and hydro-metallurgical industries. The fluid 

properties are assumed to be constant and a first-order 

homogeneous chemical reaction is assumed to take place in 

the flow. Chemical reaction can be classified as 

heterogeneous or homogeneous. A homogeneous chemical 

reaction is one that occurs uniformly throughout a given 

phase. The species generation in a homogeneous reaction is 

analogous to internal source of heat generation. Suction or 

injection on the boundary layer played significant role in the 

field of aerodynamics and space sciences. 

Shojaefard [1] used suction/injection to control fluid flow 

on the surface of subsonic aircraft. Braslow [2] stated that by 

controlling the flow such as in fuel consumption might be 

decreased by 30%, a considerable reduction in pollutant 

emission is achieved and operating costs of commercial 

airplanes are reduced by at least 8%. Sudhagar et al [3] 

explored the association of mixed convection flows with 

convective boundary conditions on heat and mass transfers of 

nanofluid in an isothermal vertical wedge implanted in a non-

Darcy porous medium. The model used for the nanofluid 
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consolidates the impact of Brownian motion, thermophoresis, 

and convective boundary conditions. Many interests have 

been shown in the study of flow of heat and mass transfer 

with suction or injection because of its extensive engineering 

applications. 

The heat and mass transfer simultaneously affecting each 

other that will cause the cross-diffusion effect. The heat 

transfer caused by concentration gradient is called the 

diffusion-thermo or dufour effect. On the other hand, mass 

transfer caused by temperature gradients is called soret or 

thermal diffusion effect. Thus soret effect is referred to 

species differentiation developing in an initial homogenous 

mixture submitted to a thermal gradient and the dufour effect 

referred to the heat flux produced by a concentration 

gradient. The soret effect, for instance has been utilized for 

isotope separation, and also in the mixture between gases 

with very light molecular weight ���, ���  and of medium 

molecular weight 	���, 	
�� . The importance of soret and 

dufour effects is in fluids with very light and medium 

molecular weight. In heat and mass transfer problems, the 

variation of density with temperature and concentration give 

rise to a combined buoyancy force under natural convection. 

Soret and dufour effects are also critical in various porous 

flow regimes occurring in chemical and geophysical systems. 

A common area of interest in the field of aerodynamics is 

the analysis of thermal boundary layer problems for two-

dimensional steady and incompressible laminar flow passing 

a wedge. Simultaneous heat and mass transfer from different 

geometrics embedded in porous media has many engineering 

and geophysical applications such as geothermal reservoirs, 

drying of porous solids, thermal insulation, enhanced oil 

recovery, packed-bed catalytic reactors, cooling of nuclear 

reactors, and underground energy transport. 

Moorthy [4] analyzed soret and dufour effects on natural 

convection heat and mass transfer flow past a horizontal 

surface in a porous medium with variable viscosity. It was 

evident that for gases, the Nusselt number decreases and the 

Sherwood number increases as it is opposite for liquids. 

Shivaiah and Rao [5] dealt with the effects of heat and mass 

transfer on two-dimensional steady MHD free convection 

flow along a vertical porous plate embedded in porous 

medium in presence of thermal radiation, heat generation, 

viscous dissipation and chemical reaction under the influence 

of dufour and soret effects. These similar equations were then 

solved numerically by using the shooting method along with 

fourth order Runge - Kutta integration scheme. It was also 

assumed that all the fluid properties were constant except that 

of the influence of the density variation with temperature and 

concentration in the body force term (Boussinesq’s 

approximation). The soret term exemplifies the temperature 

gradient effects on the variation of concentration, hence the 

decrease. 

Omowaye et al. [6] investigated a magnetohydrodynamic 

boundary layer problem posed when the viscosity of the fluid 

varied inversely with temperature. It revealed the influence 

of temperature dependent fluid viscosity parameter on 

dufour, soret and magnetic parameter. The non-linear 

momentum, energy and species boundary layer equations 

were transformed into ordinary differential equations using 

suitable similarity variables. The transformed boundary layer 

equations were solved using HAM. Rashidi [7] studied the 

MHD mixed convective heat transfer for an incompressible, 

laminar, and electrically conducting viscoelastic fluid flow 

past a permeable wedge with thermal radiation via a semi-

analytical/numerical method, called Homotopy Analysis 

Method (HAM). The boundary layer governing partial 

differential equations were transformed into highly nonlinear 

coupled ordinary differential equations consisting of the 

momentum and energy equations using similarity solution. 

Muhaimin [8] investigated the effect of thermophoresis 

particle deposition and temperature dependent viscosity on 

unsteady non-Darcy mixed convective heat and mass transfer 

of a viscous and incompressible fluid past a porous wedge in 

the presence of chemical reaction. The wall of the wedge is 

embedded in a uniform non-Darcian porous medium in order 

to allow for possible fluid wall suction or injection. 

Lavanya and Ratnam [9] focused on the effects of soret, 

dufour and thermal radiation on unsteady MHD free 

convection flow past an infinite vertical porous plate in the 

presence of chemical reaction has been analyzed. The 

dimensionless governing equations were solved numerically 

by a Finite Element Method. The velocity, temperature and 

concentration profiles were presented for different 

parameters. Kandasamy et al [10] studied the effects of 

chemical reaction, heat and mass transfer on boundary layer 

flow over a porous wedge with heat radiation in the presence 

of suction or injection. The study showed an approximate 

numerical solution for the steady laminar boundary layer 

flow over a wall of the wedge in the presences of species 

concentration and mass diffusion which were obtained by 

solving the governing equations using numerical techniques. 

The flow field was influenced by the chemical reaction, 

buoyancy ratio between species and thermal diffusion and 

suction/injection at the wall surface. 

Stagnation flows are found in many applications such as 

flows over the tips of rockets, aircrafts, submarines and oil 

ships. Transport processes in porous media play a significant 

role in various applications, such as geothermal engineering, 

thermal insulation, energy conservation, petroleum industries 

and solid matrix heat exchangers. Wubshet and Ayele [11] 

discovered the problem of two-dimensional steady laminar 

MHD boundary layer flow past a wedge with heat and mass 

transfer of nanofluid embedded in porous media with viscous 

dissipation, Brownian motion, and thermophoresis effect. 

The transmuted model was shown to be controlled by a 

number of thermophysical parameters, viz. the pressure 

gradient, magnetic, permeability, Prandtl number, Lewis 

number, Brownian motion, thermophoresis, and Eckert 

number. 

Motsa et al [12] illustrated the implementation of Bivariate 

Spectral Relaxation Method, where it analyzed fluid viscosity 

unsteady boundary layer flow over a vertical surface due to 

impulsive motion. Suitable similarity variables were used to 

transform the governing equations to yield a highly non-
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linear and coupled system of partial differential equations 

which was decoupled using Gauss-Siedel relaxation 

technique and the implementation of spectral collocation in 

both space and time variable. 

From the literature survey, the influence of thermal 

radiation, soret and dufour on the boundary layer flow over a 

porous wedge in the presence of chemical reaction have not 

been investigated so far. Hence, we result to study using a 

BSRM approach. The transformed governing equations are 

solved using the bivariate spectral relaxation method. 

2. Mathematical Formulation 

A steady two-dimensional laminar convective boundary 

layer flow over a porous wedge in the presence of soret, 

dufour and thermal radiation is considered. The x-axis is 

taken parallel to the wedge and y- axis is taken normal to the 

wedge. The fluid is assumed to be Newtonian �. �, 	
�,����������. 

 

Figure 1. Flow analysis along the wall of the porous wedge. 

The density variation and the effects of buoyancy are taken 

into consideration in the momentum equation (Boussinesq’s 

approximation [13]). The chemical reactions are taken place 

in the flow and a constant suction or injection will be 

imposed at the surface of the wedge. The effects of sorets and 

dufour in the effects of chemical reaction, heat and mass 

transfer on boundary layer flow over a porous wedge with 

heat radiation in the presence of suction or injection. Now, 

the governing boundary layer equations of momentum, 

energy and diffusion for the flow under Boussinesq’s 

approximation are: 
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Subjected to the boundary conditions; 

� � 0, � � � , + � +D, ' � 'D��E � 0,
� � ��F�, + � +), ' � ')�GE → ∞. J          (5) 

where all the variables and parameters are defined under 

nomenclature. 

The terms in the governing equations are defined below: 

ϑ L�M
LN� is viscous term, U 

PQ#
PR  is pressure term, $�%&�' (

')� � �%*�+ ( +)�, sin 0
�  is buoyancy forces along the 

wedge, 

S
T �u ( U � is porosity term along the wedge, ∝ L�V

LN�  is 

thermal diffusivity, 
4

WXY
LZ[
LN  is radiative heat flux, 

\]
X^

_`
aY

L�X
LN�  is 

dufour terms, 
b#
WXY �T ( T)�  is heat absorbed or generated, 

De
L�X
LN� is mass diffusivity, Kg�C ( C)� is concentration term, 

\]T`
V]

L�V
LN� is soret term. 

Using Roseland approximation, the radiative heat flux is 

given by: 
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iC � ( jk
lm

�&n
��                                      (6) 

where o and p are the Stefan-Boltzmann constant and the 

mean absorption coefficient respectively. By using Roseland 

approximation, the present study is limited to optically thick 

fluids. If temperature differences within the flow are 

sufficiently small, then we are going to linearize equation (6) 

by expanding 'j in the Taylor series about ') and neglecting 

higher order term. 

Neglecting the higher order terms, it has been shown 

that:'j ≈ 4'')l ( 3')j . Therefore, equation (6) becomes 

�78
�� � ( 4tk

lm ')l u�
�&

���v                       (7) 

Substitute (7) into the energy equation (3), which becomes 

equation (8) 

� �&
�� � � �&

�� �∝ ��&��� + 4tkl5*6m ')l ��&��� + 9:*; <=>6 ��*��� + ?#5*6 �' − ')�                                      (8) 

Following the lines of Kafoussias et al., [14], the following change of variables are introduced 

w�F, E� = x�"#��4yA z�F, {�; } = &~&�&�~&� ; 	{�F, E� = Ex�4yA�"#��� ; 	ϕ = X~X�X�~X�                           (9) 

Under this consideration, the potential flow velocity can be written as 

� �F� = 	FA, %4 = �A4yA                                                                        (10) 

Where 	,�	are constants.%4	is the Hartree pressure gradient parameter that corresponds to %4 = 0� for a total angle Ω of the 

wedge. 

The continuity equation (1) is satisfied by the stream functionw�F, E� defined by 

� = ����and� = − ����                                                                             (11) 

The equations (2) to (4) become the set of coupled non-linear partial differential equations; 

������ + uz + %�F ����v u������v − %4F ���� u �������v + %� �1 − u����v�� + %����} + ��� Sin u0�v + %�� u���� − 1v = 0       (12) 

�1 + �� ������ + ���z ���� − ���%�} ���� − ���%�F u���� ���� − ���� ����v + ���%��} + �@� ������ = 0                 (13) 

������ + ��z ���� − ���%�F� − ��%�� u����v − ��%�F u���� ���� − ���� ����v + �� ������ = 0                      (14) 

The corresponding boundary conditions are: 

���� = 0, z�ξ, 0� = �1, } = 1, � = 1                                                                 (15) 

���� → 1, } → 0, � → 0                                                                            (16) 

We now introduce these parameters; 

%4 = 2�1 +� ; %�����G����� = 21 + � ; �� = �∝ ; � = � � F�+�� ¡ 

�� = ��%�' − ')��	FA�� ¡ ;� = �%∗�+ − +)��%�' − ')� ; �	 = %£ � 1	FA� ; � = £C	FA 

� = 3�+� ∝ p16o')l ; 	@� = @A∝ +¥ £&�� �+D − +)'D − ')� ; ��	 = �@A ; ��	 = @AB&�'A �'D − 'D+D − +)� 

Where v is the velocity of suction if v < 0 and injection 

if v > 0 also S1  is the suction parameter if �1 > 0  and 

injection if�1 < 0. Let© = £Fª«:�  [14] be the dimensionless 

distance along the porous wedge surface �© > 0� . In this 

system of equations z�©, {�, }�©, {�	��¬	��©, {�  are the 

dimensionless stream function, dimensionless temperature 

and dimensionless concentration respectively. Both the wall 

temperature and concentration are assumed to have power-

law variation forms as shown by the following equations: 'D = ') + +4F­,+D = +) + +�F­.J                              (17) 
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where	+4and +� are constants and � is the power of index of 

the wall temperature	�'� and concentration	�+�. 
Equations (12) to (16) now result into the following: 

���
��� � uz � %�ξ ���¯v u

���
���v ( %4ξ ���� u

���
�¯��v � %� �1 ( u����v

�� � %����} � ��� Sin u0�v + %�� u���� − 1v = 0            (18) 

�1 + �� ������ + ���z ���� − ���%�} ���� − ���%�ξ u���� ���¯ − ���¯ ����v + ���%��} + �@� ������ = 0                  (19) 

������ + ��z ���� − ���%�ξ�� − ��%�� u����v − ��%�ξ u���� ���¯ − ���¯ ����v + �� ������ = 0	                          (20) 

The corresponding boundary conditions are: 

z�ξ, 0� = u �4yAv ξª«:� �� − ξª°:� ���¯ ξ�ξ, 0�¡ = �1       (21) 

�1>0 corresponds to suction and �1 < 0	corresponds to 

injection. 

���� = 0, z�ξ, 0� = �4, } = 1, � = 1               (22) 

���� → 1, } → 0, � → 0                    (23) 

Equations (18) to (20) with the boundary conditions can be 

regarded as a system of partial differential equations for the 

functions z, }	��¬	� with ξas a parameter for given pertinent 

parameters. In practical engineering application, major 

important physical parameters of practical values are the 

local skin friction coefficient, Nusselt number and Sherwood 

number for this boundary layer flow. There are defined as 

follows: ±D = p u����v�² and in dimensionless form, we obtain+� =³�5"#� ; 
Therefore, the local friction is: +� = m5"#� �x�4yA�� ¡���4 �´ zµµ�ξ, 0� 
The Nusselt number is given by:�� = − ��&�~&�� u�&��v�²  

Therefore, the Nusselt number is: �� = 	− *ª�¶�&�~&���x�4yA�� ¡���4 �´ }µ�ξ, 0� 
The Sherwood number is given 

by:�ℎ = 	− ��&�~&�� u�*��v�²  

Therefore, the Sherwood number is �ℎ = 	− *��¶�&�~&���x�4yA�� ¡���4 �´ �µ�ξ, 0�. 
As ���4 �´ = x"#�1  is the local Reynolds number. 

3. Bivariate Spectral Relaxation Method 

(BSRM) 

In this section, the bivariate relaxation method (BSRM) is 

used in solving the governing coupled non-linear system of 

partial differential equations (18), (19) and (20) with the 

corresponding boundary conditions (21), (22) and (23) are 

presented. The method applies the Gauss-Seidel relaxation to 

arrange and decoupled the system to form a linear sequence 

of partial differential equations that are solved in succession 

over a number of iterations. Consequently, re-arranging the 

equations and linearising in Gauss-Seidel. The prime denotes 

partial differentiation with respect to η. 

ggy4µµ + � ,g�ξ, {� + ��,g�ξ, {��Cy4µ − %�� + �4,g�ξ, {�ggy4µ − %4�C� = �l,g�ξ, {� �¹[°ª�¯ + �j,g�ξ, {�ggy4µ u�º[°ª�¯ v        (24) 

zCy4µ = �Cy4                                                                        (25) 

» ,g�ξ, {�}Cy4µµ + »4,g�ξ, {�}Cy4 + »�,g�ξ, {� + »l,g�ξ, {�}Cy4µ + »j,g�ξ, {�}Cy4 = »¼,g�ξ, {� ��8°ª�¯ u−»t,g�ξ, {�}Cy4µ �º[°ª�¯ v  (26) 

�Cy4µµ + � ,g�ξ, {��Cy4 + �4,g�ξ, {� + ��,g�ξ, {��Cy4µ + �l,g�ξ, {��Cy4 = �j,g�ξ, {� ��8°ª�¯ + �¼,g�ξ, {��Cy4µ �º[°ª�¯         (27) 

Subject to the boundary conditions: fgy4�ξ, 0� = �1; ggy4�ξ, 0� = 0; }gy4�ξ, 0� = 1; �gy4�ξ, 0� = 1ggy4�ξ,∞� = 1; }gy4�ξ,∞� = 0; �gy4�ξ, 0� = 0 J                                         (28) 

Where the coefficients are defined as 

� ,g�ξ, {� = %� + %����}C +��C� sin �Ω2�−%��; �4,g�ξ, {� = %��; ��,g�ξ, {� = fg; 
�l,g�ξ, {� = %�ξgg; �j,g�ξ, {� = −%�ξ; �¼,g�ξ, {� = −%4�C�; 
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» ,g�ξ, {� = �1 + R�; »4,g�ξ, {� = ���%��; »�,g�ξ, {� = �@��Cµµ; »l,g�ξ, {� = ���fgy4; »j,g�ξ, {� = −���%�}Cy4; »¼,g�ξ, {� = ���%�ξ�Cy4; »t,g�ξ, {� = −���%�ξ; � ,g�ξ, {� = −ξ����%�; �4,g�ξ, {� = ��}Cy4µµ ; ��,g�ξ, {� = ��fgy4; �l,g�ξ, {� = −��%��Cy4; �j,g�ξ, {� = ξ%����Cy4; �¼,g�ξ, {� = −ξ%��� 

Motsa et al 	[15]  used spectral collocation method to 

discretise in space { and finite differences in time domain À. 

But this paper discretised in space {and time ξ domains. The 

chebyshev collocation method requires the domain to be 

transformed to[−1,1] × [−1,1] . With linear transformation 

of { ∈ [−1,1]  and ξ ∈ [−1,1]  to ± ∈ [−1,1]and Ã ∈ [−1,1] , 
respectively. The spatial and time domains are discretized 

using Chebyshev-Gauss-Lobatto points defined as: 

±Ä = cos u�ÄÇÈv , ÃÄ = cos u�ÄÇÉv , 
 = 0,1,… , ��; Ë = 0,1,… , �Ì     (29) 

Each equation in the decoupled linear system of partial 

differential equations (18) – (20) is solved independently. In 

solving equation (18) it is assumed to be approximated by a 

bivariate lagrange interpolation polynomial of the form: 

��ξ, {� ≈ ∑ ∑ gÎ±A, ÃÏÐLe�±<�ÇÉÏ² ÇÈA² LÒ�Ã�      (30) 

It interpolates ��ξ, {� at the collocation points. 

��ξ, {� ≈ ∑ ∑ gÎ±A, ÃÏÐLe�±<�ÇÉÏ² ÇÈA² LÒ�Ã�     (31) 

Function 

Le�±� = ∏ ³~³Ô³:~³Ô ,ÇÈA² AÕ< Le�±<� = δe,_ = ×0if	� ≠ £1ifm = k       (32) 

Function LÒ�Ã� is defined in the same way. 

Following �+�����	��	�Û. , [16], '��z��ℎ��	[17]� , we 

define the derivatives of ��ξ, {� with respect to { and ξ at the 

collocation points ±< and ÃÄ  as follows: 

�Ý��Þ�³Ô,ßà� = ���∑ ∑ gÎ±A, ÃÏÐ Pá]�³Ô�P³ÇÉÏ² ÇÈA² LÒ�ÃÄ� = DGã                                                (33) 

��Ý���Þ�³Ô,ßà� = @�Gã                                                                                (34) 

�Ý�¯Þ�³Ô,ßà� = 2∑ ∑ gÎ±A , ÃÏÐ Páä�ßà�PßÇÉÏ² ÇÈA² Le�±<� = 2∑ dã,ÒGÒÇÉÏ²                                            (35) 

Where dã,Ò�i, j = 0,1,2, … , �Ì� are entries of the standard Chebyshev differentiation matrix ¬ = ç¬Ä,Ïè of size ��Ì + 1� ×��Ì + 1�  see for an example �+��������Û. , [16], '��z��ℎ��	[17]� , @ = ��é ç@C,¥è	��, G = 0,1, … , ���  with ç@C,¥è  being a ��� + 1� × ��� + 1� Chebyshev derivative matrix and the vector Gã is defined as 

Gã = çgã�± �, gã�±4�, … , gãÎ±ÇÈÐèV                                                                  (36) 

Accordingly, applying the collocation method, we arrive at; 

	ÄGgy4,ã + � ,g�ξã�+�¼,g − 2�l,g�ξã�∑ dã,ÒêëÒ² Ggy4,Ò − 2�j,g�ξã�@Ggy4,ã∑ dã,ÒêëÒ² fgy4 = 0                      (37) 

Subject to boundary conditions 

ggy4,ã�±��� = 0, ggy4,ã�± � = 1                                                                     (38) 

Where 	Ä = D� + ��,g�ξã�D + �4,g�ξã� �e,g�ξã��m = 0,1� is the diagonal matrix of the vector ç�e,g�± �, �e,g�±4�, … , �e,g�±���èV 

and��,g�ξã� = ç��,g�± �, ��,g�±4�, … , ��,g�±���èV. 

Expanding equation (37) and impose boundary conditions for 
 = 0,1, … , Në gives the following matrix equation: 

í 	 , ⋯ 	 ,êï⋮ ⋱ ⋮	êï, ⋯ 	êï,êïò í
ó[°ª,#ó[°ª,ª:ó[°ª,õï

ò = í öª,#öª,ª:öª,õï
ò                                                               (39) 

Where  

	Ä,Ä = 	Ä − 2�l,g�ξã�dã,Ò − 2�j,g�ξã�@. I. dã,ÒI, wheni = 0,1, … , Në~4                                           (40) 

	Ä,Ï = −2�l,g�ξã�dã,ÒI − 2�j,g�ξã�@. I. dã,ÒI, when	i ≠ j                                                 (41) 
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�4,Ä = −� ,g�ξã�−�¼,g�ξã�                                                                   (42) 

Where I is an ��� + 1� × ��� + 1� identity matrix 

Similarly, applying the bivariate collocation on equations (26) and (27) gives ûã}gy4,ã + »�,g − 2»¼,g∑ dã,ÒêëÒ² }gy4,Ò − 2»t,g@}gy4,ã∑ dã,ÒêëÒ² fgy4,Ò = 0                                      (43) 

+ã�gy4,ã + �4,g − 2�j,g∑ dã,ÒêëÒ² �gy4,Ò − 2�¼,g@�gy4,ã∑ dã,ÒêëÒ² fgy4,Ò = 0                                     (44) 

Subject to the boundary conditions }gy4,ã�±��� = 0, }gy4,ã�± � = 1, �gy4,ã�±��� = 0, �gy4,ã�± � = 1                                               (45) 

Where ûÄ = » ,C�ξã�D� + »4,g�ξã�D + »l,g�ξã�D + »j,g�ξã� +Ä = D� + � ,g�ξã�D + ��,g�ξã�D + �l,g�ξã� 
»e,g�ξã�, �e,g�ξã��m = 0,1� are the diagonal matrix of the vector ç»e,g�± �, »e,g�±4�, … , »e,g�±���èV  and ç�e,g�± �, �e,g�±4�,… , �e,g�±���èV, »�,g�ξã� = ç»�,g�± �, »�,g�±4�, … , »�,g�±���èV andç��,g�± �, ��,g�±4�, … , ��,g�±���èV. 

Expanding equation (43) and (44) and impose boundary conditions for 
 = 0,1, … , Në gives the following matrix equation: 

í û , ⋯ û ,êï⋮ ⋱ ⋮ûêï, ⋯ ûêï,êïò ü
�[°ª,#�[°ª,ª:�[°ª,õï

ý = í ö�,#ö�,ª:ö�,õï
ò                                                              (46) 

í + , ⋯ + ,êï⋮ ⋱ ⋮+êï, ⋯ +êï,êïò ü
�[°ª,#�[°ª,ª:�[°ª,õï

ý = í ö�,#ö�,ª:ö�,õï
ò                                                              (47) 

Where ûÄ,Ä = ûã − 2»¼,gdã,ÒI − 2»t,g@. I. dã,ãI, i = 0,1, … , Në                                                         (48) 

ûÄ,Ï = −2»¼,gdã,ÒI − 2»t,g@. I. dã,ãIwhen	i ≠ j 
��,Ä = −Î»�,gÐ, 	�l,Ä = −Î�4,gÐ                                                                     (49) 

��,Ä = −Î»�,gÐ, 	�l,Ä = −Î�4,gÐ	                                                                      (50) 

+Ä,Ä = +Ä − 2�j,gdã,ÒI − 2�¼,g@. I. dã,ÒI, i = 0,1, … , Në~4                                                   (51) 

+Ä,Ï = −2�j,gdã,ÒI − 2�¼,g@. I. dã,ÒI, when	i ≠ j                                                         (52) 

The approximate solutions for ��ξ, {�, }�ξ, {�	and	��ξ, {�are obtained by iteratively solving 

the matrix equations, (39), (46) and (47) in turn for r =0,1,2, … Simple exponent functions that satisfy the boundary 

conditions (22) and (23) can be used as initial 

approximations to start the iterative process at r = 0. In this 

work, these functions were used as initial approximations: 

z �ξ, {� = −1 + { + �~� + �1, } �ξ, {� = �~�and� �ξ, {� = �~�  (53) 

The equations are further coded using symbolic mathematical 

software from MatLab to solve the flow equations numerically 

with Bivariate Spectral Relaxation Method. 

4. Discussion of Results 

In order to get physical insight into the problem, the 

numerical calculations for the distribution of the velocity, 

temperature, concentration, across the boundary layer for 

various values of the parameter have been carried out using 

bivariate spectral relaxation method on the governing 

equations and the corresponding boundary conditions. The 

effects of the main controlling parameters as they appear in 

the governing equations are discussed in the current section. 

In the present study, the following default parametric values 

are adopted �1 = 1;γ = 0.5; Pr = 0.71; N = 2; Gr = 0.5; R = 

0.5; � = 0.5; Sc = 0.62; Sr = 0.5; Ω = (pi/6); ©= 0.5; � = 0.5; 

Du = 0.4. All graphs therefore correspond to these unless 

specifically indicated on the appropriate graph. 

The influence of the chemical reactionγ on velocity profiles 

has been illustrated in Figure 2. It is observed that, while all 

other participating parameters are held constant and γ  is 

increased, it is seen that the velocity decreases with increase in 

chemical reaction. Figure 3, shows the influence of γ on the 

temperature profile of the flow where it increases as the 

chemical reaction �γ�  increases. The Figure 4 portrays the 
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effects of chemical reaction on the concentration of the flow 

profile. It is shown that the concentration of the fluid decreases 

with increase in the chemical reaction. This shows that diffusion 

rate can be tremendously altered by chemical reaction. 

 

Figure 2. Velocity profiles for different values of chemical reaction ���. 

 

Figure 3. Temperature profiles for different values of chemical reaction ���. 

 

Figure 4. Concentration profiles for different values of chemical reaction ���. 
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Figure 5 depicts the velocity distribution f µ�η, ©� for 

different values of the buoyancy ratio. Due to the uniform 

chemical reaction, it is clear that the velocity of the fluid 

increases with increase of the buoyancy ratio. Figure 6 shows 

the dimensionless temperature profile for different values of 

buoyancy ratio. In the presence of uniform chemical reaction, 

it is seen that the temperature of the fluid decreases with the 

increase in the buoyancy ratio. Figure 7 portrays the 

concentration profile of the fluid. It shows concentration of 

the fluid decrease as the buoyancy ratio increases. 

 

Figure 5. Velocity profiles for different values of buoyancy ratio (N). 

 
Figure 6. Temperature profiles for different values of buoyancy ratio (N). 

 

Figure 7. Concentration profiles for different values of buoyancy ratio (N). 
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Figure 8 illustrates the dimensionless velocity profiles for 

different values of heat radiation. In thepresence of uniform 

chemical reaction and suction, it is clear that the velocity 

increases in the flow boundary layer thickness with the 

increase in the heat radiation. Thus, thermal radiation 

enhances convective flow. Figure 9 shows the temperature 

profile of the fluid. There was an increase in the temperature 

profile of the fluid with an increase in the thermal boundary 

layer thickness as the heat radiation increases. Figure 10 

depicts the concentration ϕµ�η, ©�  of the fluid. The 

concentration increases with the increase in heat radiation. 

 

Figure 8. Velocity profiles for different values of radiation parameter (R). 

 

Figure 9. Temperature profiles for different values of radiation parameter (R). 

 

Figure 10. Concentration profiles for different values of radiation parameter (R). 
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Figure 11 depicts the velocity distribution for different 

values of soret. There no activity of soret on the velocity of the 

fluid as the various values of soret increases. Figure 12 reveals 

the temperature profiles for different values of soret. It shows 

the decrease in the temperature of the fluid as the soret values 

increase. Figure 13 exhibits the concentration profiles for 

different values of soret. There was an increase in the 

concentration of the fluid as we have various values of soret. 

 

Figure 11. Velocity profiles for different values of soret (Sr). 

 

Figure 12. Temperature profiles for different values of soret (Sr). 

 

Figure 13. Concentration profiles for different values of soret (Sr). 
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Figure 14 portrays the velocity profiles for different values 

of dufour. There was increase in the values of dufour, but has 

no effect on the velocity profile of the fluid. 

Figure 15 depicts temperature profiles for different values 

of dufour (Du). The temperature of the fluid increases as the 

various values of dufour increases. Figure 16 shows the 

concentration profiles for different values of dufour. With the 

increase in the values of dufour, there is decrease in the 

concentration of the fluid. 

 

Figure 14. Velocity profiles for different values of dufour (Du). 

 

Figure 15. Temperature profiles for different values of dufour (Du). 

 

Figure 16. Concentration profiles for different values of dufour (Du). 
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Figure 17 reveals the velocity profiles for different values 

of angle of inclination. The increase in the angle of 

inclination shows increase in the velocity profile of the fluid. 

Figure 18 exhibits the temperature profile of the fluid. The 

increase in the values of the angles of inclination shows no 

activity in the temperature profile. Figure 19 illustrates the 

concentration profile of the fluid. The concentration of the 

fluid has no effect recorded. Representative velocity profiles 

for three typical angles of inclination 

�Ω � 30 , 45 	and	60 � are presented. The fact is that as the 

angle of inclination increases the effect of the buoyancy force 

due to thermal diffusion decrease by a factor ofsinΩ. 

Table 1. Values of local skin friction zµµ�©, 0�,, local nusselt number (}�©, 0�and the local sherwood number (��©, 0� for du. 

�� � �� 	 
� � �� 
 � � �� �µµ��,�� (���,�� (���,�� 
1 0.5 0.71 2 0.5 0.5 0.62 30  0.5 0.5 0.0 1.4368660 0.4752537 0.9564075 

1 0.5 0.71 2 0.5 0.5 0.62 45  0.5 0.5 0.5 1.43687020 0.3452941 1.0448958 

1 0.5 0.71 2 0.5 0.5 0.62 60  0.5 0.5 1.0 1.43687500 0.1801338 1.1550789 

Table 2. Values of local skin friction zµµ�©, 0�, local nusselt number (}�©, 0�and the local sherwood number (��©, 0� for sr. 

�� � �� 	 
� � �� 
 � � �� �µµ��,�� (���,�� (���,�� 
1 0.5 0.71 2 0.5 0.5 0.62 30  0.5 0.5 0.0 1.4368586 0.3632003 1.1081819 

1 0.5 0.71 2 0.5 0.5 0.62 45  0.5 0.5 0.5 1.4368693 0.37373015 1.0256579 

1 0.5 0.71 2 0.5 0.5 0.62 60  0.5 0.5 1.0 1.4368773 0.38495278 0.9391546 

Table 3. Values of local skin friction zµµ�©, 0�, local nusselt number (}�©, 0�and the local sherwood number (��©, 0� for r. 

�� � �� 	 
� � �� 
 � � � �µµ��,�� (���,�� (���,�� 
1 0.5 0.71 2 0.5 0.5 0.62 30  0.5 0.5 0.0 1.4369958 0.1000000 1.1082348 

1 0.5 0.71 2 0.5 0.5 0.62 45  0.5 0.5 0.5 1.4368693 0.3737301 1.0256579 

1 0.5 0.71 2 0.5 0.5 0.62 60  0.5 0.5 1.0 1.4368472 0.4747728 0.9997569 

 

Figure 17. Velocity profiles for different values of angle of inclination���. 

 

Figure 18. Temperature profiles for different values of angle of inclination ���. 



20 Felix Ilesanmi Alao et al.:  Soret and Dufour Effects on Heat and Mass Transfer of Boundary Layer Flow over Porous   

Wedge with Thermal Radiation: Bivariate Spectral Relaxation Method 

 

Figure 19. Concentration profiles for different values of angle of inclination ���. 

The effects of soret number, dufour number and radiation 

parameter on the local skin-friction coefficient, the local 

nusselt number and the local sherwood number as shown in 

Tables 1, 2 and 3 above. The increase in soret number shows 

that the local skin friction and the local nusselt number 

increase while local sherwood number decrease. The increase 

of dufour number indicates an increase in skin friction and 

local sherwood number and decrease in local nusselt number. 

The increase of radiation parameter shows the decrease in 

local skin friction and local sherwood number while local 

nusselt number increases. 

5. Conclusion 

The present study gives the numerical solution of 

boundary layer flow over porous wedge in the presence of 

heat radiation, soret and dufour effects. There are many 

parameters involved in the final form of the mathematical 

model. 

It shows the effects of the controlling parameters on the 

flow’s velocity, temperature and concentration profiles in the 

boundary layer. We conclude that: 

1. a decrease in velocity and temperature of the fluid with 

the increase in the heat radiation. The concentration 

profile increases with the increase in heat radiation. 

2. the decrease in the temperature of the fluid as the soret 

values increase. There was an increase in the 

concentration of the fluid as we have various values of 

soret. 

3. the temperature of the fluid increases as the various 

values of dufour increases, while there is decrease in 

the concentration of the fluid. 

4. decrease in the temperature and concentration of the 

fluid as the suction velocity increases. Hence suction 

reduces the growth of the thermal and concentration 

boundary layers. 

5. the velocity of the fluid increases with increase of the 

buoyancy ratio. The temperature and concentration of 

the fluid decrease with the increase in the buoyancy 

ratio. 

The presented analysis has also shown that the flow field is 

appreciably influenced by the dufour and soret effects. 

Therefore, we can conclude that the dufour and soret effects 

on boundary layer of fluids as it is expected that this research 

may prove to be useful for the study of movement of fluid 

(oil, gas and water) through the reservoir of an oil or gas 

field, in the movement of underground water and also the 

filtration and purification of water processes. 

Nomenclature 

� �F� (velocity of the flow 

�, � (			velocity components in F and E respectively 

F, E (			coordinate system 

� (					gravitational force due to acceleration 

@A (		coefficient of mass diffusivity 

+� (				specific heat at constant pressure 

BC (			chemical reaction parameter 

� (				buoyancy ratio 

�� (		prandtl number 

�� (		schmidt number 

�� (		grashof number 

�1 (		suction or injection parameter 

+) (	free stream concentration 

+ (			fluid concentration 

' (			fluid temperature 

+D (	concentration at the wall 

'D (	temperature at the wall 

'A (	mean fluid temperature 

') (	free stream temperature 

+ (			concentration at any point in the flow field 

+¥ (		concentration susceptibility 

@� (	dufour number 

�� (	soret number 

�� (	schmidt number 

� (			radiation parameter 

z (			dimensionless stream function 

zµ (		dimensionless velocity function 

B& (	thermal diffusion ratio 

�� (	nusselt number 

+� (		local friction number 

�· (	sherwood number 



 American Journal of Chemical Engineering 2019; 7(1): 7-21 21 

 

� (				pressure 

� (		falkner - skan power – law parameter 

iC (		radiative heat flux 

� (amount of heat generated or absorbed per unit volume 

Greek Symbols 

∝ (	fluid thermal diffusivity 

% (	viscosity 

%& (thermal expansion coefficient 

%* (concentration expansion coefficient 

%4 (hartree pressure 

%� (constant 

� (	internal heat generation or absorption coefficient 

ξ (	dimensionless distance along the wedge 

w (dimensionless stream function 

{ (dimensionless similarity variable 

Ω (angle of inclination 

� (density of the fluid 

o (stefan-boltzmann constant 

p (mean absorption coefficient 

} (dimensionless temperature 

� (dimensionless concentration 

� (kinematic viscosity 

� (porous medium parameter 

γ (chemical reaction parameter 
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