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Abstract: This paper surveyed the most important, well known two-phase mass transfer models, namely film-, 
film-penetration- and surface renewal models, applying them to describe the three-phase mass transfer rates at the gas-liquid 
interface. These models should enable the user to predict the mass transfer enhancement in the presence of a third, in the mass 
transport active, dispersed phase. Depending on the particle size of the dispersed phase, the pseudo-homogeneous and/or the 
heterogeneous model can be recommended for nanometer sized and micrometer sized particles, respectively. The effect of all 
important mass transport parameters, namely particle size, surface renewal frequency, diffusion depth, solubility coefficient, 
has been shown by typical figures. It has been analyzed how strongly depends the applicability of the homogeneous- or the 
heterogeneous models not only on the particle size but on the mass transport parameters. As case study, the measured and the 
predicted mass transfer rates have been investigated in nanofluids.  
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1. Introduction 

The three-phase system, with dispersed, immiscible 
droplets or solid particles in the liquid phase, has an 
important place in the engineering and chemical and 
biochemical fields. The effect of the dispersed phase on the 
absorption rate is widely investigated in research 
laboratories or development centers. The main objective of 
these studies is to predict the enhancement of the gas-liquid 
(or liquid-liquid) mass transfer in presence of dispersed 
phase. Wide variety of the three-phase system exists but this 
study discusses the most important mass transfer equations, 
applying the well-known mass transfer theories as the film-, 
surface renewal- and film-penetration theories, in presence 
of dispersed particles in the liquid boundary layer at the 
gas-liquid (or liquid-liquid) interface where the mass 
transport is not accompanied by chemical reaction in any 
phases. The main objective of this study is to analyze the 
mass transport process to be able to predict the enhancement 
of the absorption rate.  

Recently Ramachandran[1], Kaur et al. [2] as well as 
Dumont and Delmas [3] survey the gas absorption in 

presence of dispersed phase. Ramachadran focuses his 
survey to show the effect of solid, reacted or catalytic 
particles on the absorption rate applying different physical 
models taken from the literature mostly utilizing the shuttle 
mechanism [3-10] to describe the effects of particles on the 
mass transfer enhancement. He does not discuss the 
heterogeneous model with particles freely moving in the 
boundary layer during the absorption. Kaur et al. [2] and 
Dumont and Delmas [3] summarize briefly both the 
homogeneous and the heterogeneous models given a few 
expressions to predict the enhancement. No detailed analysis 
of the mass transport is presented. The homogeneous models 
consider dimensionless, dispersed particles, which 
absorb/adsorb the transported component but they can be 
inert particles as well. Several researcher proposed and 
investigated the pseudo-homogeneous models [4-9] which 
model might only be used when the particle size is much less, 
about one/two orders of magnitudes less than the laminar 
boundary layer. This assumption is not often fulfilled when 
the dispersed droplet are produced by traditionally mixing 
process. Number of studies tries to take into account the 
simultaneous effect of the internal diffusion and the 
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continuous phase diffusion applying the more complex, one 
or two-dimensional heterogeneous models [10-18]. These 
models are recommended when the particle size is 
comparable, not much less, to the laminar film thickness. 
Both the heterogeneous and the pseudo-homogeneous 
models apply the mass transfer theories as film- or surface 
renewal theories [19] taking into account the effect of the 
mass transport into or through the particles being in the 
boundary layer.  

Another approach of gas-liquid mass transport, in 
presence of fine solid particles as carbon particles, is 
considering the so-called hydrodynamic effect instead of the 
shuttle mechanism [20-21]. According to it the particles 
adsorbs the contaminants of the gas-liquid interface and due 
to it the liquid surface tension, and consequently the mass 
transfer coefficient will be changed. According to the 
hydrodynamic mechanism, the enhancement is induced by a 
transition from rigid surface to that of completely mobile 
one with higher mass transfer coefficient [21]. Thus, the 
increase in the mass transfer coefficient in presence of 
particles is the results in the removal of the contaminants 
from the interface by their adsorption onto the particles 
decreasing the surface tension and due to it increasing the 
mass transfer rate. It is obvious that this mechanism might 
be true in special cases, only.  

The application of nanometer sized particles, or other 
saying, nanofuids becomes nowadays more and more 
important in the chemical and biochemical industries. The 
behavior of nanoparticles in the gas-liquid boundary layer 
can essentially differ from that of the micrometer sized 
particles. Several investigators have found that the 
enhancement in nanofluid can be much higher than in 
presence of micrometer sized dispersed phase [22-26]. 
Important question is how these phenomena can be 
explained. Krishnamurthy et al. [27] studied the diffusion of 
a dye and stated that its diffusion is over 10-fold higher in 
nanofluid than in water. Similar increase of the diffusion 
coefficient was obtained by Fang et al. [28] who investigated 
the diffusion of Rhodamine B in Cu-water nanofluid. 
Brownian motion of suspended nanoparticles and the 
induced microscopic convection of the fluids around the 
nanoparticles are the most important contributing factor for 
enhancement of the mass transport in the boundary layer. 
The effect of this convection on the solute diffusion 
coefficient could be taken into account by an additional as 
e.g. dispersion term in a conductive model [23, 24, 29] as it 
is made in heat transfer process [30]. Recently Veilleux and 
Coulombe proposed a Brownian motion-induced dispersion 
model of mass diffusion in nanofluids starting from the 
generalized Langevin-equation [31, 32]. This model shows a 
strong dependency on the particle Peclet number which 
causes large enhancement in the mass diffusion. The 
diffusion enhancement has a maximum in the ε=0 to ε=4 % 
volume fraction range of 10 nm Al2O3 nanoparticles.  

 

2. Theory 

As it has been mentioned the mathematical model of the 
three-phase mass transport can depend strongly on the 
particle (droplet) size. Basically two types of model can be 
recommended, namely the so called pseudo-homogeneous 
and the heterogeneous models. Basically, it can be stated if 
the particle size is comparable to the film laminar thickness 
or to the penetration depth of the absorbed component, the 
heterogeneous model is recommended for description of the 
mass transport in the liquid boundary layer on the gas-liquid 
(or liquid-liquid) interface. The pseudo-homogeneous 
model can only be recommended when the size of active 
particles (or passive ones in cases of nanosized particles, the 
third phase) is about one/two orders of magnitudes less than 
the thickness of the boundary layer or the penetration depth. 
The thickness of the boundary layer or the penetration depth 
can be easily estimated. The mass transfer coefficient can 
change between about 10-4 and 10-5 m/s depending on the 
hydrodynamic conditions. Assuming that the diffusion 
coefficient in the liquid phase changes between 10-8 and 10-9 
m2/s, thus the thickness can vary between about 10 µm and 
100 µm by equation of / oDδ β= . In reality, the film 

thickness changes between about 10-40 µm, due to the 
intensive operation conditions. The penetration depth, ∆yp, 

can be estimated e.g. by 2
p

y Dt∆ = , where the time taken 

for the displacement due to diffusion is the residence time of 
liquid elements in the boundary layer. Let us assume that the 
diffusion time is equal to the reciprocal value of the surface 
renewal frequency according to [19], thus one can obtain 

that  2 /
p

y D β∆ = , that is the penetration depth has 

similar values, about 10-40 µm, as the film thickness 
obtained by the film theory [19]. Nagy [33] compared to 
mass transfer results between the homogeneous and 
heterogeneous models in a solid, catalytic membrane layer 
where the spherical catalyst particles (modeled as cubic ones) 
were uniformly distributed in the support membrane layer. It 
was obtained that that the two models give similar results up 
to 1-3 µm with membrane thickness 30-50 µm. Accordingly, 
the pseudo-homogeneous model can be recommended in 
case of particle size about less than 1 µm and the 
heterogeneous model is recommended when the particle size 
is larger than 1 µm.  

Let us look at the important mass transfer rate’s equations 
of these models in order to be able to predict the absorption 
enhancement in presence of a third, dispersed phase. 

In the case of the pseudo-homogeneous model the size of 
the dispersed phase is much smaller than the thickness of the 
laminar boundary layer. The particles/droplets can be 
regarded as dimensionless entity and they will be applied as 
source term in the differential mass balance equation for the 
boundary layer. 

The boundary layer containing the dispersed phase can be 
illustrated by Figure 1 for the heterogeneous model. 
Depending on the particle size, there can be located one or 
more particles in the diffusion path perpendicular to the 
gas-liquid interface. The diffusion depth determines how 
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many particles (it can be more tens or even hundred), in 
transverse direction, can affect the gas-liquid mass transfer 
rate applying e.g. the surface renewal theory and thus, 
should be taken into account during our calculation of the 
mass transfer rate.  

2.1. The Pseudo-Homogeneous Model 

This model can be recommended when the particle size is 
less than 1 µm for traditional unit operations and reactors. 
The dispersion of a liquid phase, with droplets size less than 
about 1 µm, needs special methods. The preparation of 
nanosized solid particles is not a difficult task, nowadays. 
The time needed for internal diffusion (t=R2/D) depends 
strongly on the particle size. Thus, the diffusion time of e.g. 
oxygen (DO2=2.3 x 10-9 m2/s) in a droplet with size of 50 or 
1000 nm is 2.7 x 10-7 s and 4.3 x 10-4 s, respectively. The 
residence time of the liquid element according to the surface 
renewal theory (t=D/βo2) is equal to 0.23 s and 23 s, for 
kL=1x10-4 m/s and kL=1x10-5 m/s, respectively. The 
relatively large difference between the diffusion and 
residence times grounds that the mass transfer in liquid 
nanodroplets can be considered as instantaneous. But in the 
case of solid, porous nanoparticles, these data can be 
significantly different. The diffusion coefficient can be one 
or two orders of magnitude less than in a liquid phase. 
Accordingly, the diffusion time, in solid nanoparticles, can 
increase up to 0.01-0.1 s, which can be comparable to that of 
the residence time of liquid elements in the boundary layer. 
Thus, the diffusion transport must not be neglected in solid 
nanoparticles when one describes the mass transport in the 
liquid boundary layer in a nanofluid.  Briefly, both transport 
processes are discussed in the following sections.   

If you want to describe the mass transport through a liquid 
boundary layer, first the mass transfer rate into the 
nanoparticles should be determined which can then be used 
as source term in the differential mass balance equation of 
the gas-liquid (or liquid-liquid) boundary layer. The 
differential mass balance equation for boundary layers at a 
planar gas-liquid (or liquid-liquid or solid liquid) interface, 
for unsteady-state, can be as: 

2

2 1d

C C
D J

ty

ω
ε

∂ ∂− =
− ∂∂

           (1) 

with initial and boundary conditions as: 

if  t = 0, y > 0 then  C=Co 

if  t > 0, y = 0 then  C=C* (2) 

if  t > 0, y = δ then  C=Co 

The functions Jd provides the specific mass-transfer rate 
into the droplets/particles in the gas-liquid boundary layer. 
The mass transfer rate into the dispersed phase will be 
defined in the next sections. 

 

2.1.1. Mass transport rates with instantaneous internal 

mass transport 

The Jd value cannot be given by exact value in this case. In 
order to solve this problem, the second term of the left hand 
side of Eq. (1) should be replaced by expression of 
(ε/[1-ε]) /

d
C t∂ ∂  [7]. The differential mass balance 

equation for the gas-liquid boundary layer will be as [23]: 

2

2 1
d

CC C
D

t ty

ε
ε

∂∂ ∂− =
− ∂ ∂∂

         (2a) 

Solving the Eq. (1) with the boundary conditions given by 
Eqs. (2), the mass transfer rate can be given as: 

( )
*1

tanh 1

D H
J C

λ ε ε
δ λψ ε

− +=
−

       (3a) 

with 

1

1

Hε εψ λ
ε

− +=
− ;  

2s

D

δλ =
 

Applying the surface renewal theory, one can get as: 

*1

1

H
J Ds C

ε ε
ε

− +=
−

           (3b) 

The mass transfer enhancement can be as: 

*

1

1

J H
E

DsC

ε ε
ε

− +≡ =
−

        (3c） 

2.1.2. Mass Transport With Finite Internal Mass 

Transport 

The mass balance for the inside of small particles, with 
initial and boundary conditions can be given as follows: 

2

2

2d d d

d

C C C
D

r r tr

 ∂ ∂ ∂
+ = ∂ ∂∂ 

         (4) 

with 

if  t = 0,  r > 0 then  Cd=0 

if  t > 0,  r = R then  Cd= d
C∗    (5) 

if  t > 0,  r = 0 then  0d
C

r

∂
=

∂
 

Eq. (4) can easily be solved e.g. by the Laplace transform. 
Doing that and applying the surface renewal theory 
developed by Danckwerts [19], the mass transfer rate can be 
expressed as [7]: 

d d d
J Cβ ∗=                  (6) 

where 
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1
tanh

d

d

D

R

ϑβ
ϑ

 = − 
 

            (7) 

with 

2

d

sR

D
ϑ =  

Note that the Jd value defined by Eq. (6) is an average 
value obtained by averaging by the exponential time 
distribution of the residence time of liquid elements and, 
accordingly, the particles in the boundary layer. It can easily 
be seen that the Jd value will be zero when the surface 
renewal frequency, s tend to zero, that is, the property of the 
boundary layer tends to the film theory.  

Substituting the Jd (Jd=βdHC) value into Eq. (1) and 
solving with boundary conditions (2), one can get as: 

( )
*

tanh
J Ds C

ψ
λψ

=             (8) 

with 

1
1

dH

s

βωψ
ε

= +
−

 

Applying the surface renewal theory, one can get as: 

*J Ds Cψ=                  (9) 

2.1.3. Description of the Mass Transport in the Boundary 

Layer of a Nanofluid 

As it was mentioned, the Brownian motion of suspended 
nanoparticles and the induced microscopic convection of the 
fluids around the nanoparticles are the most important 
contributing factor for enhancement of the mass transport in 
the boundary layer. The effect of this convection on the 
solute diffusion coefficient could be taken into account by an 
additional as e.g. dispersion term in a conductive model. The 
exact description of this process is not known yet. Assuming 
that the heat and mass transfer in the nanofluid are analogous 
to each other, the analytical approach for heat transfer in the 
nanofluid can be applied to describing mass transfer inside 
the nanofluid [23,29]. The general correlation for the heat 
transfer coefficient for the Brownian motion-induced Stokes 
flow of multiple nanoparticles can be given as [30]:  
h=kL(1+ARemPr0.333ε)/R where A and m are constant. 
According to Prasher et al. [30] m=1.7. Accordingly, Nagy 
et al. [23] recommend the following equation in order to 
predict e solute diffusion coefficient in nanofluid, Dnf: 

1.7 1/3

1/3
1.7 163

1/3

1 Re

1 Re
1

g

nf

g

y
D D A Sc

d

D A Sc
ε

ε

 ∆ = +     

  
 ≡ +   −  

       (10) 

The g and A are constants. Xuan [29] suggests a more 
general equation for it as: 

( )1 Rem n p

nf nf nfD D A Sc ε= +         (11) 

The A, m, n, p are constants. According to Veilleux, and  
Coulombe [32] have found the following approach: 

( )22 Re
nf

D D Pe D Scξ ξ= ≡            (12) 

where ξ is a constant. 
Considering that the ∆y distance lowers with the increase 

of the dispersed phase hold-up, Eq. (12) can be completed by 
factor ∆y/d, as it is made in Eq. (10), one can get as: 

( )22 Re
g

nf

y
D D Pe D Sc

d
ξ ξ ∆ = ≡  

 
      (12a) 

For verification of the above equations the Eq. (10) and 
(12a) were used, because these expressions have got two 
parameters, only. On the other hand these equations are 
originated from different mass transfer approaches [23, 29, 
32].  

2.2. The Heterogeneous Model 

The heterogeneous model takes into account the internal 
mass transport solving simultaneously the diffusion 
alternatively through the continuous and dispersed phases. 
This model is much complex than the homogeneous model. 
The first heterogeneous model was developed by Mehra [6] 
and Nagy [13-15]. Mehra [6] gives numerical solution while 
Nagy [13-15] developed analytical model and expresses the 
mass transfer rate by explicit, closed forms for the case when 
chemical reaction, in the continuous phase, namely 
biochemical reaction, is accompanied the absorption. The 
spherical particles were considered as cubic ones for 
simplification of the description (Fig. 1). It was investigated 
how the oxygen absorption rate is enhanced by the presence 
of dispersed organic phase. In order to be able to express the 
mass transfer rate, the differential mass balance equation 
system given for the continuous and the dispersed phases, 
should be solved. Applying the resistance-in-series model, it 
can give a rather complex equation system which is really 
difficult to be solved, analytically. Important advantage of 
the heterogeneous model is that it applicable for the case of 
fine, medium or large particles, as well. The set of 
differential mass balance equations for the heterogeneous 
model (for the heterogeneous part of the boundary layer; this 
is where particles are located in the diffusion path, behind 
each other, perpendicular to the gas-liquid interface to be 
solved will be as:  

2

2
i i

i

C C
D

ty

∂ ∂
=

∂∂
  i=continuous, d (disperse) phase (13) 
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Figure 1. Illustration of the boundary layer for heterogeneous model 

The initial and boundary conditions, considering every 
internal interface between the cubic dispersed particles, is 
given by Eq. (14). The spherical particles are modeled by 
cubic one with the same volume). Thus, one can get the size 
of cubic particle: d=dp(π/6)1/3, the distance between cubic 
particles (the distance between the two interfaces of 
neighboring particles (see Fig. 1A), [13, 15]: ∆y=d(1/ε1/3-1). 
The value of y1 is the distance of cubic particle from the 
gas-liquid interface, perpendicular to the interface. The 
boundary conditions for the external interfaces, namely at 
y=0 and y=δ, as well as for the internal interfaces of every 
sub-layer will be as (for details see Nagy, [13,14]: 

if  t = 0, y > 0 then  C=0 

if  t > 0, y = 0 then  C=C*                (14) 

if  t > 0, y = δi and y =
i

δ ∗  then  Cd=HC 

if  t > 0, y = δi and y = 
i

δ ∗  then d

d

CC
D D

y y

∂∂ =
∂ ∂

 

if  t > 0, y = δ then C=0 

Accordingly the differential equation system obtained 
contains 2N+1 second-order differential equations. This 
equation system can be solved analytically, applying the 
Laplace transform. (The solution methodology is briefly 
summarized in the Appendix [34]). Look at the solution for 
cases given in Fig. 1. The mass transfer rate can be 
expressed as: 

j Cβ ∗=                  (15) 

The value of β, for the case of two sub-layers, i.e. when y1 

+ d ≥ δ (Fig. 1B) is expressed as: 

( ) ( )
( ) ( )

1

1

tanh tanh

tanh tanh
d

d

Hn
Ds

Hn

ϑ ϑ
β

ϑ ϑ
+

=
+

       (16) 

where 

2
1

1 1

s y
Y

D
ϑ λ∆= = ∆ ; 

2

d

d

sd

D
ϑ = ;  

2s

D

δλ = ; dD
n

D
=  

The β value when one particle can only be located in the 
boundary layer, i.e. for the case when the boundary layer 
consists of three sub-layers (y1 + d+∆yN+1 = δ) (Fig. 1B), is 
as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2

2 1 2

tanh
tanh tanh 1 tanh tanh

tanh
tanh tanh 1 tanh tanh

d

d

d

d

nH
nH

Ds

nH
nH

ϑ
ϑ ϑ ϑ ϑ

β
ϑ

ϑ ϑ ϑ ϑ

 
+ + + 

 =
+ + +  

(17) 

where 

2

2 1 1

s
Y

D

δϑ += ∆  

Assuming that the film thickness is infinite, δ→∞, 
according to the surface renewal theory, Eq. (17) can be 
rewritten as: 

( ) ( ) ( )

( ) ( ) ( )

1

1

tanh
tanh 1 1 tanh

tanh
1 tanh 1 tanh

d

d

d

d

nH
nH

Ds

nH
nH

ϑ
ϑ ϑ

β
ϑ

ϑ ϑ

 
+ + + 

 =
+ + +  

(18) 

In the case of N particles in the boundary layer behind 
each other (N>1), the expression of the mass transfer rate 
needs to solve an algebraic equation system containing 2N 
equations where the N can be very large, especially, in the 
presence of fine particles in the boundary layer. This 
algebraic equation system obtained by the application of the 
boundary conditions expressed by Eq. (13) [13,14], solving 
it by the Cramer rules [34] enables to express the mass 
transfer rate. A brief description of this mathematical 
procedure is given in the Appendix. Accordingly, the mass 
transfer rate can be given as follows for that case: 

             

( )
, ,

1 ,2cosh
A N B N

E N

Dsβ
ϑ

Ψ + Ψ
=

Ψ

          

(19) 

with 

, 1 , 1

1 , 1

tanh

1
tanh tanh

d

k N N k N

d N k N

th

nH

n
H

ϑϑ

ϑ ϑ

+ −

+ −

 Ψ = + Ψ 
 

 + + Ω 
 

       (20) 

and 

( ), , 1

, 1

tanh tanh 1

tanh
tanh

k i d k i

d

k i

Hn

Hn
n

ϑ ϑ
ϑϑ

−

−

Ω = + Ω

 + + Ψ 
 

  k=2,…N-1  (21a) 
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, , 1

, 1
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tanh

tanh
1 tanh

k i d k i

d

k i

n
H

nH

ϑϑ

ϑϑ

−

−

 Ψ = + Ω 
 

 + + Ψ 
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  k=2,…N-1  (21b) 

where  

s y
Y

D
ϑ λ∆= ≡ ∆  

with k=A,B,E 
Not that according to the surface renewal theory δ is 

considered to be infinite. Modifying Eq. (20) accordingly, 
namely looking its limiting case when δ→∞ 
(consequently 1N

Y +∆ → ∞ ), the ψj,N value will be as: 

, , 1

, 1

tanh
1

1
tanh

d

k N k N

d k N

nH

n
H

ϑ

ϑ

−

−

 Ψ = + Ψ 
 

 + + Ω 
 

  k=A,B,E   (22) 

The starting values of ,j i
Ω and ,j i

Ψ  (j=A, B, E) are 

different from each other, which are as follows:  

( ),0 1expA H ϑΩ = −  ( ),0 1expB H ϑΩ =  ( ),0 1tanhE H ϑΩ = (23) 

( ),0 1exp
A

ψ ϑ= − −   ( ),0 1exp
A

ψ ϑ=   ,0 1
A

ψ =   (24) 

The j mass transfer rate can be given much easier for the 
film theory applying the resistance-in-series model. Thus, 
one can get, for the film theory, as: 

( )* o
j C Cβ= −              (25) 

where 

1 1

1

1 1 1 1

d f N
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H

β

β β β β +

=
 
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        (26) 

with 

1
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The overall mass transfer rate, related it to the total 
gas-liquid interface, can be given by the following equation 
[13,14]: 

( )2/3 2/31o
J j jε ε= + −           (27) 

3. Results and Discussion 

Several authors discussed the three-phase mass transfer 
rates applying both the homogeneous and the heterogeneous 

models. This paper focuses to show which model can be 
recommended for application, depending on the particle size, 
the penetration depth and the surface renewal frequency. It is 
obvious that the penetration depth is crucially important 
using the heterogeneous model. Its value strongly depends 
on the residence time of the liquid element in the boundary 
layer. Accordingly, the number of particles that can alter the 
mass transfer rate can be very large, depending on the 
particle size, dispersed phase hold-up and surface renewal 
frequency. On the other hand, the applicability of the 
pseudo-homogeneous models should also depend on these 
parameters, as well. These circumstances were not really 
analyzed until yet because the heterogeneous model has got 
rather complicate mass transfer rate equations, though the 
particle/droplet size often grounds for its usage instead of 
the pseudo-homogeneous model.   

3.1. Effect of the Particle Size 

The mass transfer rate has been predicted applying every 
mass transfer models, namely pseudo-homogeneous models 
with finite particle diffusion rate [Eqs. (8) and (9)] and with 
instantaneous particle mass transfer [Eqs. (3a) and (3b)] as 
well as the heterogeneous model [Eqs. (19)-(24)] using the 
surface renewal theory. For every model the surface renewal 
theory is applied which means infinite thickness of the 
boundary layer. That means infinite number of particles 
behind each other perpendicular to the gas-liquid interface. 
As it was mentioned, the number of particle to be taken into 
account in our prediction is determined by the penetration 
depth, thus the N value can be calculated e.g. by equation of 
∆yp≈∆y1+N(d+∆y). During calculation the N value can 
easily be estimated applying enough large N value for the 
calculation where its change does not cause further change 
in the j value. The effect of the particle size is illustrated in 
Fig. 2, at two different values of fluid mass transfer 
coefficient, namely kL=1x10-4 m/s and kL=5x10-4 m/s, as a 
typical figure. Accordingly the surface renewal frequency 
(s=(kL)2/D) are 5 1/s and 125 1/s,  as well as the penetration 

depth ( 2 2 /
p

y Dt D β∆ = ≡  with the assumption of 

t=1/s) are 22.8 µm and 4.5 µm, respectively. Note that the 
enhancement is the ratio of the mass transfer rate in presence 
of dispersed phase related to that without dispersed phase. 
As it was shown [13-15], the distance between the first 
particle and the gas-liquid interface can strongly affect the j 
mass transfer rate. Its value was chosen to be 0.5∆y, which 
can be regarded as average value of the expectable ones 
from 0 up to ∆y. The value of D was chosen to be 2x10-9 m2/s 
which is approximately equal to the diffusion coefficient of 
oxygen in water, and the solubility (H=10) is also close to 
the oxygen solubility in organic phase. The continuous lines 
give the enhancement (the mass transfer rate in three-phase 
system related to that without dispersed phase) at kL=1x10-4 
m/s for instantaneous particle mass transfer rate (line 1), for 
finite particle mass transfer rate (line 2) and for the 
heterogeneous model (line 3).  
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Figure 2. The The enhancement as a function of the particle size applying 

the pseudo-homogeneous model with instantaneous particle mass transfer 

rate (lines 1), with finite mass transfer rate (lines 2) and the heterogeneous 

model (lines 3). (D=2x10-9 m2/s; ε=0.2; D=Dd; H=10; ∆y1=0.5∆y; 

N=20-300; continuous lines: kL=1x10-4 m/s; dotted lines: kL=5x10-4 m/s; 

line 1 is valid for both mass transfer coefficients) 

For this kL value, the two homogeneous models give the 
same enhancement up to about 20 µm particle size, 
indicating that the particle mass transfer rate can be really 
regarded as an instantaneous process. This is in harmony 
with the penetration depth obtained for that case. Note that 
the diffusion time of particles, td, with radius R can be 
estimated as td=R2/D, and for the td=d2/D≈1.62R/D. Thus, 
the particle diffusion time for the heterogeneous model is 
about 62 % higher than that of a spherical particle. On the 
other hand the homogeneous model assumed that the 
concentration of the whole surface of particle is constant 
while it can strongly decrease with the increase of the 
particle size, thus, this model can overestimate the mass 
transfer rate at larger particle, i.e. if dp<<δ inequality is not 
more fulfilled. The enhancement results of the 
heterogeneous model starts to deviate at about 3-5 µm from 
that of the homogeneous models. As it is expected the 
deviation of the models can be much higher when the mass 
transfer coefficient increases, i.e. when the residence time of 
liquid elements decreases (dotted lines in Fig. 3 with 
kL=5x10-4 m/s. Note that in the case of instantaneous internal 
mass transport the enhancement is not changed with the kL 
mass transfer coefficient, thus, line 1 is also valid here). The 
about 25 times shorter residence time of liquid element in 
the boundary layer changes the shape of curves (dotted lines) 
much more dramatically than in case of kL=1x10-4 m/s. The 
question arises which model can be considered to be true, at 
higher particle size, in this case e.g. when dp>1 µm. Up to 
about 5 µm, the internal transfer rate seems to be 
instantaneous. This can be true because the particle diffusion 
time and the residence time of the fluid elements are closely 
equal, namely 0.01 s, to each other. On the other hand the 
film thickness, it is about 4 µm, thus, it is obvious that the 
conditions for a pseudo-homogeneous model, namely that dp 
should be much less than δ is not fulfilled at all. Accordingly 
the much lower results of the heterogeneous model should 
be more realistic than that of the homogeneous one. 

 
Figure 3. The effect of the kL mass transfer coefficient on the enhancement 

at different particles size in the liquid applying the pseudo-homogeneous 

model with instantaneous particle mass transfer rate (lines 1), with finite 

mass transfer rate (lines 2) and the heterogeneous model (lines 3). . 

(D=2x10-9 m2/s; ε=0.2; D=Dd; H=10; ∆y1=0.5∆y; N=10-300); 

3.2. Effect of the kL Mass Transfer Coefficient 

The mass transfer coefficient of the poor liquid phase can 
also affect the applicability of the models at a given particle 
size as illustrated in Fig. 3 at three different particles sizes. 
The residence time ranges between 0.002 s to 20 s, while the 
diffusion depth between 1.12 µm up to 200 µm in the kL 
range investigated. The enhancement for instantaneous 
internal mass transport is independent of the particle size, its 
value is equal 1.87. For values of dp< 1 µm, the model with 
instantaneous mass transfer rate can be practically valid in 
the whole range of kL investigated. The pseudo 
homogeneous model with finite internal reaction rate can be 
applied in the range where this model gives similar results 
with the heterogeneous one. That could also mean that if dp> 
1 µm, the application of heterogeneous model might be 
recommended in the whole range of the kL values. This 
figure shows clearly, that the effect of the dispersed phase 
strongly decreases with increase of the mass transfer 
coefficient, that is, with the decrease of the diffusion depth. 
Not that the distance of the first particle from the interface, 
∆y1 was chosen to be 0.5∆y, which means a relatively large 
value. Its effect is illustrated later, in Fig. 5. 

3.3. Effect of the Particle Number, N, in the Diffusion 

Path 

Every particle behind each other perpendicular to the 
gas-liquid interface, which is located in the penetration 
depth, can affect the mass transfer rate. Obviously, this effect 
lowers in the direction of the bulk phase. This situation is 
illustrated in Fig. 4 at different values of the liquid mass 
transfer coefficient without particles. As it is expected the 
number of particles which affects the enhancement is 
changing with the change of the kL value. Even the 10th 
particle, though dp=10 µm, increases the enhancement at 
kL=1x10-5 m/s. While at a high mass transfer coefficient, 
namely kL=1x10-4 m/s, the first two particles influences the 
mass transfer rate. On the other hand, the dispersed phase 
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has hardly any effect when the diffusion depth is less than 
the particle size. That the case when kL=5x10-4 m/s where 
∆yp≈4 µm.  

 
Figure 4. Effect of the particles in the diffusion path behind each other 

applying the heterogeneous model (D=2x10-9 m2/s; ε=0.2; D=Dd; H=10; 

∆y1=0.5∆y; dp=10 µm) 

3.4. Effect of the H solubility coefficient 

As it is expected the mass transfer rate increases with the 
increase of the H value (Fig. 5). The results of the 
homogeneous model will be identical due to the relatively 
small particle size chosen, dp=1 µm (dotted line). The 
continuous lines give the enhancement when ∆y1=0.5∆y 
(∆y1 ≈0.35 µm, line 2a), as it was done in the previous 
figures, as well as when the first particle is closer to the 
gas-liquid interface, namely ∆y1=0.05∆y, (∆y1≈0.035 µm, 
line 2b) in order to illustrate the importance of the ∆y1 value. 
As can be seen the difference between the two models 
increases with the increase of the H value (lines 1 and 2a). It 
should means to my opinion that the homogeneous model 
does not give real results at even small particle size when it 
has high solubility coefficient. On the other hand, if the first 
particle is located very close to the interface, the 
heterogeneous model gives higher enhancement than that of 
the homogeneous one. As it was mentioned the real average 
distance of the first particle from the interface could be the 
half of the distance between the particles as it was used 
during our previous calculations. It was also proved in 
previous papers that the solid particles can adhere to the 
gas-liquid interface [15, 35] creating multi-layer of particles 
on the interface. The mass transport through this multi layers 
can easily be calculated by the heterogeneous model 
presented here. 

3.5. Mass Transfer into Nanofluid 

For that case the internal mass transport can be really 
regarded as an instantaneous process. Thus the 
homogeneous model should give real results. According to 
Eqs. (10) to (12) the diffusion coefficient in a nanofluid can 
be increased by a multiplicative factor due to the particle 
Brownian motion induced microscopic convection of the 
fluids around the nanoparticles. Thus, the enhancement in 
nanofluid taking into account e.g. Eq. (3c) and Eqs. (10) to 
(12), can be expressed as: 

nf
D

E
D

=                 (28) 

  This means that with the increase of the diffusion 
coefficient in the nanofluid, the enhancement will be 
proportionally increased with the square of the diffusivities 
ratio.  

 
Figure 5. The effect of the solubility of the dispersed phase on the 

enhancement [dotted line (line 1): homogeneous models; continuous lines 

(lines 2a, 2b): heterogeneous model] (D=2x10-9 m2/s; ε=0.2; D=Dd; dp=1 

µm) 

3.6. Case Study 

Because of its more and more importance in the chemical 
engineering, the effect of nanoparticles on the oxygen 
absorption rate was chosen for model verification. Thus, the 
measured data of Nagy et al. [23] as well as that of Olle et al. 
[22] were applied, who measured the absorption into 
nanofluid with dispersed n-hexadecane and with Fe3O4 
nanoparticles covered by oleic acid, respectively. The 
particle size of n-hexadecane droplets was 65 nm, while that 
of the Fe3O4 nanoparticles was 20-25 nm, thus, the internal 
mass transfer rate can be regarded as instantaneous process 
and consequently, the pseudo-homogeneous models [e.g. Eq. 
(3b)] can be used. The enhancement can be predicted by Eq. 
(28). The diffusion coefficient in the nanofluid can be 
predicted by e.g. Eqs. (10) to (12a). The measured and the 
predicted data are shown in Fig. 6 in the case of oxygen 
absorption into n-hexadecane containing nanofluid. The 
dotted line represents the predicted data obtained by Eq. (10), 
while the continuous line that obtained by Eq. (12a). The 
values of the two parameters obtained are as: g=0.8, A=110 
for Eq. (10), and g=0.8, ξ=0.016 for Eq. (12a). The 
agreement between the measured and the predicted data are 
good, data by Eq. (12a) give somewhat better results. Note 
that the g exponent was chosen to be the same in the both 
equations during estimation of its value. In a previous paper 
of Nagy et al. [23] the heterogeneous model suited also 
excellently the measured data.  
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Figure 6. Measured (∆ points) and the simulated curves using Eq. (10) 

[dotted line] and Eq. (12a) [continuous line] applying n-hexadecane 

dispersed phase (for details see [23], dp = 65 nm, kL=1 x 10-4 m/s, Re=0.039, 

Sc=435, H=8, D=Dp=2.3 x 10-9 m2/s) 

The prediction of data of Olle et al. [22] seems to be more 
difficult. The application of Eq. (10) with g=1 did not give 
enough good agreement between the measured and the 
predicted data (see [23]) due to the high enhancement at low 
value of the particle holdup (ε=0.01). On the other hand, 
further increase of particle holdup does not give essential 
increase in the enhancement (Fig. 7, measured red squares). 
The predicted and measured data are in very good agreement. 
Values of constants, obtained, are: g= 0.3, ξ=0.01 for 
Eq.(12a), as well as g=0.3, A=25 for Eq. (10).  

 
Figure 7. Measured enhancement (black squares) taken from Olle et al. [22] 

and the predicted curves applying Eq. (10) [continuous line] and Eq. (12a) 

[dotted line] (dp = 25 nm, Re=0.082, Sc=216, H=8, kL=1 x 10-4 m/s, 

D=Dp=3.2 x 10-9 m/s) 

Comparing the value of constants obtained by the two 
particle sizes, it can be seen that values of all three 
parameters, g, A, ξ, are different. In principle, their values 
should be independent of the particle size. This should mean 
that the model equations can be regarded as approaches, thus, 
further investigations are needed to clarify the mass 
transport mechanism in nanofluid. 

4. Conclusion 

The absorption rate in the presence of nanosized or 
microsized dispersed phase was analyzed both theoretically 
and experimentally. Depending on the particle size different 
mathematical models should be applied for description of 

the mass transfer enhancement taking also into account the 
diffusion time (both the internal and external ones), the 
diffusion depth on the gas-liquid interface, etc. It was shown 
how the mass transfer rate is influenced by the kL mass 
transfer coefficient, the number of particles in the diffusion 
path, the H solubility coefficient. In the case of nanosized 
particles the pseudo-homogeneous models while for 
microsized particles, depending on the residence time of the 
liquid elements, the heterogeneous model can be 
recommended. It was proved that the increased diffusion 
coefficient in nanofluid can be predicted by the 
dimensionless expressions given in this paper.   
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Appendix 

Here we give a brief summary of the solution of the 
algebraic equation system, given by Eqs. (A1) to (A8) 
applying the boundary conditions given by Eqs. (13). For the 
solution of the determinants, the well-known Cramer rules 
were used. 

The algebraic equation system, obtained by the boundary 
conditions, to be solved in order to get the values of Ai, Bi, Ei 
and Fi with i=1 to N+1 are as (see Fig. 1 for notations): 

A1+B1=C* at Y=0              (A1) 

1 1
1 1

1 1
1 1

exp exp

exp expd d

H A B

E F

δ δλ λ
δ δ

δ δλ λ
δ δ

    + −    
    

   = + −   
   
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D
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d
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D

δλ =
;
 

The values of parameters, Ai, Bi, Ei, Fi can be predicted by 
the following equation, applying the well known Cramer 
rules, as 

,i
i

ΨΨ =
D

D
 where Ψ=A, B, E, F  and i=1,..., N+1  (A9) 

The knowledge of the values of Ai, Bi, Ei, Fi enable us to 
predict the concentration distribution in the boundary layer. 
But we only want to calculate the mass transfer rate through 
the boundary layer in presence of third, dispersed phase. It 
easy to get the expression of the mass transfer rate at Y=0, 
namely: 

( )1 1

D
j A Bλ

δ
= − −            (A10) 

The determinants of the denominator and numerator of Eq. 
(A9), namely 

i
D  and D , can be obtained by the left hand 

side of Eqs. (A1) to (A8) after minor modifications. Chart 
A1 gives the D value. The determinant of 

Ai
D and 

Bi
D differ from Chart A1 in its first column, only. Thus, the 

first two columns of 
Ai

D and 
Bi

D can be given as: 

 

Chart A2.. The first two columns of the determinants to be given for 

determination of parameters A1 and B1. 

The solution of determinant, e.g. Chart 1, can be occurred 
by step by step reducing the number of rows and columns by 
unit in every step. Thus, e.g. it can be obtained for the value 
of D  the following expression: 

( )

{ }

1
2 1

1

, , 1 ,
1

2 cosh *

cosh tanh

N
NN

i

i

N

d i E N N E N

i

nH ϑ

ϑ ϑ

+
+

=

+
=

=

Ψ + Ω

∏

∏

D

   (A11) 

where 

i
ϑ ϑ≡  when i=2,…,N 

,d i d
ϑ ϑ≡  with i=1,…,N 

The values of ΨE,N  and ΩE,N can be calculated by Eqs. 
(14) to (16b). The values of 

Ai
D and 

Bi
D can similarly be 

got, and consequently the value of 1 1 /
A

A = D D  and that 
of 1 1 /

B
B = D D , as well.  
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Chart 1. Determinant of Eq. (A9) 
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Nomenclature 

C concentration of the absorbed component in  
the liquid phase, mol/m3 

C* concentration of the absorbed component at the 
gas-liquid interface, at y=0, mol/m3 

d  diffusion distance within the cubic particles, m 
dp  particle size, m 
D  diffusion coefficient in the continuous phase, m2/s 
Dd  diffusion coefficient in the dispersed phase, m2/s 
Dnf enhanced diffusion coefficient in the nanofluid, 

m2/s 
E  enhancement (=J/Jo) 
H solubility (partition) coefficient of the absorbed 

component between dispersed phase and 
continuous one (=Cd/C) 

j  partial mass transfer rate, mol/m2s  

Jo mass transfer rate without dispersed phase, 
mol/m2s 

J overall mass transfer rate with dispersed phase, 
mol/m2s 

kL gas-liquid mass transfer coefficient without 
particles, (e.g. = Ds ), m/s 

N number of particles in the boundary layer, behind 
each other, perpendicular to the gas-liquid 
interface, - 

Pr  Prandtl number, - 
R  particle radius, m 
Re Reynolds number of Brownian nanoparticles, -  
s  surface renewal frequency, l/s 
Sc  Schmidt number, - 
T  temperature, K 
v connective velocity of Brownian nanoparticles, 

m/s  
y1 distance of the first particle from the gas-liquid 

interface, m 
∆y distance between the cubic particles, m 
∆yN+1 width of the last sub-layer, m  

Greek letters 

β  physical mass transfer coefficient in presence of  
particles, m/s 

δ  film thickness, m 
ε  hold-up of dispersed phase 

Subscripts 

d  dispersed phase 
p  particle 
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